Showing posts with label orton. Show all posts
Showing posts with label orton. Show all posts

Friday, 11 November 2011

Orton Imagery in Adobe Photoshop

The Orton imagery (a.k.a. Orton effect), named after the photographer Michael Orton, is a technique whose goal is achieving regions of high details and regions of low details in the same image.
The original technique was developed making sandwiches of slide films of the same scene taken with different levels of overexposures and different focussed areas. However, one could also choose to blend completely different slides to achieve more dramatic and artistic effects.

The Orton effect can be easily replicated in the domain of digital photography and, depending on the shooting conditions, even without bracketing exposures or voluntarily defocusing some shots. If you're shooting RAW, it's really easy to modify the exposure of a shot without loosing information, at least for relatively small adjustments: it all depends on the specific camera and RAW file format.

I agree that it's always better if you try to get things right on camera, but sometimes you simply don't known the effects you're going to use in post production. However, since what we need is usually just a maximum +2 f-stop overexposure, there's really no issue doing it during your post-production workflow.

The Basics

As we stated in the introduction, the Orton effect originated with slide films:
  • Two shots differently overexposed were taken.
  • One of them was taken out of focus.
  • The two positive slides were "sandwiched" one above the other.
Since one of the two shots has to be taken out of focus, perfect alignment isn't an issue so don't worry if you're not shooting with a tripod when you realize you're going to take an Orton-candidate shot.

In the digital domain, you aren't going to physically slide any slide and you're going to blend a couple of layers instead. To simulate the effect of two positive layers one above the others, we're going to use the Multiply blending mode:

  • Multiply darkens the lower layer based on the darkness of the upper layer.
This is consistent with what happens to a slide sandwich:
  • Being positive, the white is transparent, and the superposition of two transparent slides filters no light (if we ignore the effect of the slide plastic material itself).
  • Any non transparent area will filter (darken) the light that passes through hence two overlapped slides will filter the light twice.

Overexposing the Image

Since the overlapping layers will be multiplied, they should be overexposed so as to preserve the desired exposure of the resulting image. There's no formula to determine how much the two layers must be overexposed, just trial and error and a bit of experience.

As a rule of thumb, a total overexposure of 2 or 3 f-stops will usually give good results. However, care must be taken:

  • To avoid to clip some channel up: this may be an issue with images with large highlight areas that will be clipped with little overexposure.
  • To avoid to clip some channel down: this may be an issue with images with large shadow areas that are going to clip the black point when multiplied.
Usually, my golden rule is:
  • The darker an image, the more I overexpose it, paying attention not to clip the white.
Once a channel is clipped, information is lost. Even if you multiply two layers where the white is clipped, the result in the clipped pixels will still be white.

Defocusing the Image

This is the most critical step, indeed. If you defocus the image on camera, you're taking advantage of your lens bokeh. This is something difficult to replicate in post production, and few software have some better blurring algorithms rather than motion blur or gaussian blur.

I usually rely on the gaussian blur filter to defocus an image in post production but, if you're a Photoshop user, you could use the more advanced lens blur filter.

How To Overexpose

As I said, you've got two choices:
  • Either you overexpose on camera.
  • Or you overexpose on post production.
If you're choosing the quickest path, I seriously recommend you do it only if you shoot RAW. Shooting RAW has got the advantage of recording more dynamic range than what it's actually shown in the picture. When you overexpose a RAW image you're going to get better results, especially in the shadows area, where the additional information will bring up more details in the darkest tones.

For the sake of this example, we're going to overexpose a RAW image in post production using Adobe Lightroom. As you can see from the histogram, the blue and red channels are going to be clipped as soon as we overexpose the image.

Histogram of the Original Image

In this case, I decided to apply a minimum overexposure of 1 f-stop and postpone the final decision after checking the final result. The original image and the resulting overexposed image by 1 f-stop are the following:

Original Image

Image Overexposed by 1 f-stop

Much of the area of the petals may seem burned out but, fortunately, there's still sufficient information for the multiply blending mode to bring down in the final result, as you can see from the following image:



Orton Effect in Photoshop

Now that the two overexposed images are ready, let's switch to Photoshop to compose the final Orton image. This process is pretty simple and Photoshop is not required: you can use Photoshop Elements or The Gimp, just to cite a few. In this case, we're going to use Photoshop Elements.

The first step is trivial: opening the two images.

The Two Images Opened in Photoshop Elements

The second step is pasting the second photo as a new layer in the first photo. The quickest way to do it is:

  • Use the Select/All menu option.
  • Choose the Move tool from the palette (or press the V key).
  • Drag the selected image into the other. In Photoshop Elements you are required to drag it over the title tab, first, to have Photoshop switch between the two documents.
  • Photoshop will automatically create the second layer for you.
  • Use the move tool to align the two images.
In the layer palette, you should see the newly created layer.

Layer Palette - Resulting Layers


Now, change the blending mode of the upper layer to Multiply.

Layer Palette - Second Layer Blended with Multiply

The result so far should be a darker, more contrasted and more saturated image such as the following:

Resulting Image After Applying the Multiply Blending Mode

The last step is blurring the upper image. In this case we're going to use the gaussian blur filter but, if you've got some other blurring filter, you can try and explore new possibilities.

Also, the "quantity of blur" (radius, in the case of the gaussian blur filter) will depend on your image. For a good Orton effect you need to blur an image so that details are lost but shapes preserved. With a flower of such size in a 16 Megapixels image, I applied the gaussian blur filter with a radius of 20 pixels to achieve the following result (only the blurred layer is shown):

Gaussian Blur Filtered Layer with Radius = 20 px

The Result

The final result is this:

Final Result - Orton Effect

As you can see, the Orton effect is faithfully reproduced.

It's important to realize that every image is different, and so is the effect that you've got in your mind. The parameters you're going to use can be tweaked in order to achieve the desired effect:

  • If you want a softer (or sharper) image, just raise (or lower) the gaussian blur radius.
  • If the image is too dark, raise the overexposure of one or both of the layers.
  • If the image is too light, lower the overexposure of one or both of the layers.

A Tip For Who's Not Shooting RAW

If you want to apply this effect to a non-RAW image, you need to overexpose it using other means. The only thing you can refrain from trying is using the Brightness adjustment. It's just not designed for that and the results you're going to achieve will be awful, at best.

A good technique to simulate an overexposure in Photoshop (or The Gimp) is using the Screen blending mode. The screen blending mode can be thought as the opposite of the Multiply blending mode:
  • It brightens the lower layer proportionally to the brightness of the upper layer.
Blending an image with itself with the Screen blending mode is a good way to simulate an overexposure.



Sunday, 6 November 2011

Adobe Photoshop Lightroom Tutorial - Part XII - Presence Controls

Part I - Introduction
Part II - Lightroom Workflow
Part III - Organizing the Library
Part IV - Keywording and Metadata
Part V - Using Filters
Part VI - Importing Your Images
Part VII - Basic Editing Tools
Part VIII - Developing Your Images, The Basics
Part IX - Reading and Interpreting the Histogram - Basic Adjustments
Part X - White Balance
Part XI - The Tonal Scale
Part XII - Presence Controls
Part XIII - Coming Soon!

Presence Controls

Last but not least, the Basic panel offers a group of control labelled Presence and made up of:
  • Clarity.
  • Vibrance.
  • Saturation.
For the sake of simplicity, let's start from the last one: saturation.

Saturation

To make a long story short, saturation controls the intensity of a color. The Saturation slider in Lightroom lets you uniformly modify the saturation of the colors in an image in a [-100, 100] range:
  • A -100 saturation adjustment corresponds to no saturation at all and the result will be a monochrome image.
  • A 100 saturation adjustment corresponds to doubling the saturation of the colors.
Beware that when you increase the saturation of an image, colors channels may be clipped and as a result color shifting may occur.

I don't use the saturation tool very often, partly because I'm not so fond of too "punchy" images, and partly because of its own non-selective nature: more often than not, I only need a more selective kind of saturation enhancement:
  • I need to boost the saturation of a selected set of colors.
  • I don't want skin tones to saturate and have that orange cast.
Truth be told: I almost only use the saturation slider to completely remove the saturation of an image to produce a monochrome one. Why not simply tell Lightroom to convert the image to black and white, then? Well, just because Lightroom, by default, uses a black and white color mix that's not uniform across the spectrum (as we'll see in a future post). Sometimes it's a good starting point, sometimes it's not. Only trying with a specific image can tell.

Lightroom, as we're going to see in the following seections, provides good solutions to many of the aforementioned problems, and that's the reason why I don't use the saturation adjustment so much.

Vibrance

The Vibrance adjustment is a selective and non uniform saturation adjustment with the following characteristics:
  • It tries to avoid channel clipping.
  • When raising the saturation, it has more effect on lesser saturated colors than on more saturated ones.
  • It tries to preserve skin tones.
As a quick example, have a look at the following series of image:

Original Image
Saturation -75
Saturation +75
You can see as Saturation raises and lowers uniformly the saturation of the colors in the image.

However, this is the effect of the same adjustment using the Vibrance tool:

Vibrance -75
Vibrance +75
The Vibrance tool reduces and raises the saturation of the least saturated colors, in this case the background greens, leaving the more saturated colors, in this case the yellow petals and its orange shades toward the center, almost unmodified. In this specific case, you could also use Lightroom to selectively raise the saturation of the green channel (as we'll see in a future post).

However, the Vibrance tools is a handy tool that can help you apply saturation adjustment in a really quick way, especially in portrait photography when things can get really tricky when trying to preserve the skin tones of our models. Had we applied such a saturation adjustment in a portrait, orange shades would probably had popped up in our subject's skin pretty much as they popped up in the petals of this flower. In those cases, only Photoshop would be your friend: you'd use layers and layer masks to preserve the tones in selected image regions. Fortunately, Lightroom gets in the way and provides this quick solution to such a common problem.

Clarity (And Local Contrast)


The Clarity adjustment lets you add depth to an image by modifying local contrast. But what's local contrast, first of all? Here's a really quick introduction about this problem.

The physiology of the human eye is such that, in certain circumstances, a photo cannot be a faithful representation of what we perceive. This is especially true when dynamic range is taken into account. You have surely noticed how a well your eyes can see a scene with a high dynamic range (such as a landscape with both strong lights and deep shadows) and how bad the same scene look when you shoot it, no matter the effort you put into it. When we move our eyes around, they'll quickly adapt to the light conditions of the part of the scene we're focusing on, although you may have the impression of perceiving the entire scene as if no adaptation has occurred. On the other hand, when you take a shot you have to choose an exposure, and if the dynamic range of the scene you're taking is too high, you will simply miss the shot: either you burn the highlight or you lose details in the shadows. If you've heard about HDR (High Dynamic Range) imaging, you'll probably realize what the central idea of that technique is: you take multiple shots of the same imaging bracketing the exposure and blend them together in a single image, preserving the intensities you need across the dynamic range of the picture. This way, you artificially build a visual representation of what our eyes perceive when they move, and compensate, across regions of the image with big luminance differences.

You may think of local contrast as a technique to achieve the opposite goal: you selectively raise the contrast of light-shadow transitions to give more dynamic range to your image. However, instead of raising the overall contrast of the image (where both white and black points are moved and clippings may occur), the adjustment in only performed in smaller regions of the picture, leaving the overall black-white difference unmodified.

Lightroom lets you adjust the local contrast by both positive and negative values, in the [-100, 100] range.  Let's see some examples of how Clarity works.

Original
In this picture, the majority of pixels find themselves on the opposite sides of the range: the background is nearly black and the flower is white. Neither white nor blacks are clipped. Since the maximum luminance difference in the flower's pixels is less than 1 f-stop away, you may want to apply some adjustment to give the flower some more depth. Raising the overall contrast, as we've seen in a previous part, will only make things worse:

Contrast +100

Raising the overall contrast is going to raise the differences between black and white, but doing so means compressing whites even further, and the result will be a flower even flatter than before. You may be tempted to apply the opposite adjustment and bring overall contrast down:

Contrast -50
In fact, reducing the overall contrast expands the histogram in the recovery and in the rightest part of the exposure zone pushing them towards the center of the histogram. The flower will indeed gain depth. Unfortunately, the overall contrast reduction is going to expand the blacks and the shadows as well, pushing them towards the center of the histogram. The final result is not probably what we were looking for since the image is now flatter and duller.

Once again, there's no need to leave Lightroom and open Photoshop. The Clarity adjustment is just what we were looking for:

Clarity +50
Increasing the local contrast has raised the depth of both the flower and the leaves, leaving the overall contrast unmodified. The white and the black points do not move and we introduce no clipping at all.

Clarity adjustments are often subtle, and I suggest you zoom out when you apply it. Nevertheless, it's a very handy adjustment which many pictures can benefit from. Look at the following example (to appreciate the difference you may need to open the liked image):

Original Image
Clarity +60
Original Image
Clarity +75

Negative Clarity

The Clarity tool lets you apply negative clarity adjustment. Why would you want to reduce the local contrast of an image? Reducing local contrast has a softening effect that may be result pleasing in some kind of photos. Some portraits and some nature images, for instance, may benefit from a slight reduction of clarity, if you want to achieve a "dreamy" or "soft" mood without spending much time on applying more complex effects such as the Orton effect. In the following example you can see how a negative clarity affects the image of the two purple flowers that we've previously seen:

Clarity -50


If you want to help me keep on writing this blog, buy your Adobe Photoshop licenses at the best price on Amazon using the links below.